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Mode Completeness, Normalization, and
Green’s Function of the Inset
Dielectric Guide

T. ROZZI, SENIOR MEMBER, IEEE, AND LIZHUANG MA

Abstract — The inset dielectric guide (IDG) is an easy-to-fabricate alter-
native to image line that is also less sensitive to loss by radiation at
unwanted discontinuities. The discrete spectrum of the IDG was recently
analyzed by the transverse resonance diffraction (TRD) method.

In this paper we complete the characterization of the spectrum to
include the continuum. We also address from a fundamental viewpoint the
question of its orthonormalization, and determine the Green’s function of
the guide, which is an essential prerequisite to the analysis of IDG
components and of IDG antenna feeds. An application is given to the
scattering by a dipole on the air-dielectric interface.

I. INTRODUCTION

ONSIDERABLE EFFORT has been spent on the

development of transmission media suitable for mi-
crowave and millimeter-wave communications, obvious ex-
amples being finline and image line. At high frequencies,
as circuit dimensions and tolerances become smaller, the
cost of such circuits rises. High circuit costs may in fact
become the limiting factor to the ever-increasing commer-
cial development in millimeter-wave technology. Thus, the
ease of manufacture and capability for mass production
are becoming as important a criterion as the circuit perfor-
mance of such media.

Image line is a recognized low-loss transmission medium,
but its main disadvantage besides manufacturing difficul-
ties is its radiation loss from all practical components. In
order to confine the field more to the structure, trapped
image guide has been proposed [1], but this is even harder
to make, especially for small guide dimensions. In order to
overcome such manufacturing difficulties, inset dielectric
guide (IDG), shown in cross section in Fig. 1, has been
proposed as a low-cost alternative [2]. IDG, which is just a
rectangular groove filled with dielectric, has many of the
advantages of the trapped image guide without its fabrica-
tion problems.

The IDG structure has been analyzed previously, by
Zhou and Itoh [3], as an intermediate structure in the
analysis of trapped image guide. This analysis used the
effective dielectric constant (EDC) method and it gave
useful and accurate approximate results for the fundamen-
tal mode.
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The 90° edge, however, imposes a singularity in the
transverse fields, which is important for the accurate
evaluation of field distributions and radiation properties.

Consideration was given to the above problem in the
rigorous, full hybrid treatment in [4] using the method of
transverse resonance diffraction (TRD). The discrete spec-
trum was evaluated, together with propagation losses and
Q factors, for the fundamental and a number of higher
order discrete modes. Those results show that, away from
cutoff, propagation losses are dielectric dominated. More-
over, for practical aspect ratios, assuming a single LSE or
LSM potential gives a very good description, provided,
that is, the edge conditions are still accounted for in the
field distribution assumed over the slot aperture, which
implies that the potential is intrinsically nonseparable.

The IDG, however, is an open waveguide and, conse-
quently, its spectrum includes a continuous range of modes.
Excitation of the latter takes place due to discontinuities,
particularly when these are located close to the air—dielec-
tric interface, such as metal posts (e.g. diodes) or radiating
dipoles, if the IDG is to be used as a leaky wave antenna.
Therefore, with a view to analyzing practical components
in IDG, it is necessary to obtain a complete spectral
characterization, mclusive of the continuum. Once the
complete spectrum is found, it is possible to construct
the appropriate Green’s function of the guide for use in
the treatment of discontinuity problems. A mathematical
difficulty arises at this point inasmuch as the spectral
components need to be orthonormalized over the guide
Cross section.

This trivial task in classical waveguide becomes nontriv-
ial and tedious for guides of inhomogeneous separable
cross section, particularly if a continuum is involved.

In the IDG the problem is essentially complicated by
the nonseparable nature of the two-dimensional cross sec-
tion, containing diffraction edges (the metal corners) at the
interface between two distinct regions (the slot and the air
region). For the one-dimensional separable case (e.g. the
multilayer slab), an elegant method based on the trans-
verse equivalent circuit interpretation and the formal prop-
erties of the transverse Green’s function can be found in
textbooks such as [5].

A solution for the two-dimensional, nonseparable, open
case such as the IDG has not been reported before.
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dielectric

Fig. 1.

IDG geometry.

In this paper, it will be shown how the transverse
equivalent circuit analogy can be generalized to transverse
resonance diffraction and how these concepts can be used
to determine the orthonormalized discrete and continuous
spectrum of the IDG in the LSE /LSM description.

We will deal first with the question of the normalization
of the discrete spectrum in the same representation of the
singular field over the slot aperture which was adopted in
the TRD solution [4] and then derive the orthonormalized
continuum.

The analysis will be developed for the even LSE (TE")
polarization, having E,=0 and E, as the main electric
field component. The scalar Green’s function is subse-
quently obtained and applied to the scattering of a thin
transverse dipole at the air-dielectric interface.

II. THE NORMALIZED SPECTRUM OF THE SLAB
WAVEGUIDE

If the effect of the metal corners of the slot could be
ignored, i.e., the side walls were infinitely far removed
from each other, the IDG would reduce to a dielectric slab
over a ground plane. It is therefore instructive to retrace
briefly the procedure involved in determining the normal-
ized complete spectrum of the grounded slab, illustrated in
Fig. 2(a). A detailed discussion can be found in [5].

If the expansion of the field takes place in terms of the
transverse wavenumber in the air region, k,, taken as an
independent quantity, the wavenumber in the z direction,
B, is determined by

Br= k3= k3 o

The completeness of the TE spectrum of the slab can then
be stated as

E 0N+ [, d ik, 0 (75 k,) =80y =)

where the summation is over the finite number of surface
waves, the integral is over the continuum, and the ortho-

ky

@ ®)

(a) The metal-backed dielectric slab waveguide and (b) its
_ transverse equivalent circuit.

Fig. 2.

normalization is such that

fowdy%(y)%(y) =3,
fowdy%(y)\k(y;ky) =0

(3a)

(3b)

fowdyxlx(y; k(i k) =8(k, k). (3¢)

Analogous expressions hold for the TM case with the
weight function 1/e(y).

It is a well-known general property of the Sturm-
Liouville equation, in this case the transmission line equa-
tion for propagation in the y direction, that the Green’s
function integrated over a path C in the complex kf_ plane
to include all singularities yields the delta function. The
singularities are constituted by the set of discrete poles
corresponding to the discrete spectrum and branch line
corresponding to the continuum, namely

1
—;Egsg(y,y’;kﬁ)dkﬁﬂ(y—y’)- 4)

The Green’s function is constructed from two independent
solutions of the transverse transmission line equation:

. sing(y+h
o q.(y__) )
sin gh
where
q>=ek§-p?
=k2+(e,~1)ki=k}+v’ (6)

satisfying the boundary conditions for y <0 and
V=e (7)

satisfying the boundary conditions for y >0 such that
V=V=1at y=0.
We have then

V(y; k2)V()'5 k3)
jwp,OY(k}%)

where Y is the total admittance of the transverse equiv-
alent circuit of Fig. 2(b) (the Wronskian of the transmis-
sion line equation, which is independent of position):

(8)

g..—_

wpoY =k, — jgcot gh. (9)
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It is noted for future use that with the above choice of
voltage amplitudes, Y represents the complex power of the
transverse equivalent circuit.

It can also be seen that the occurrence of a pole of g in
the complex k; plane at k, = k7, say, coincides with the
vanishing of the total susceptance of the transverse equiv-
alent network. In order to recover (2) from (4), it is then
sufficient to isolate the residues of the poles and modify
the integration path so as to go around the branch line in
the k2 plane, by which process (4) can be rewritten, using
(5) and (6), as

V(v kp )Py k2)
ar|
_]wuo—gk—)%kys

V(v k,)V(y'5k,)
- jwp‘OY(ky)

EZ¢s(y)¢x(y')+f0°°dky¢(y;ky)xp(y';ky). (10)

2 oo
+— dk  k Im
fo y*y

ki

In (10), it is then possible to make the identification
7(y:k3,)

. ay

—J w!‘oﬁz‘

y

y<0 (11)

1/2°

¥, (y)= [

2
ks

and similarly for y >0, yielding the well-known expres-
sions for the TE surface wave of a grounded slab:

sing,(y+h)
=4 ——, <0 12
Y, (y) =4, sing h y (12a)
=Ae s, y=0 (12b)
with
2

A, = T sing,h, v, +g,cotgh=0. (13)

ht —

Ys

A substantially analogous procedure leads to the de-
termination of the component of the continuum (y, k 2
Let us introduce in (9) the following quantity of con-
venience:
q
cota=—cot gh (14)
k)’

and substitute (14) into (8). The resulting expression for a
component of the continuum corresponding to the value
k y» 0 <k, <oco, of the y wavenumber is then

2 i h
\b(y:ky) =\/;sinamt_)_,

sin gh

/2
=1/ — sin(k,y +a), y=0
7 )

which satisfy implicitly the orthonormalization conditions

y<0 (15a)

(15b)

(3). It is noted that the angle a above represents in fact the
phase shift a ray with propagation constant (k,, 8) under-
goes upon impinging on the slab and reemerging from it.

III. NORMALIZATION OF THE DISCRETE SPECTRUM
OF THE IDG

We are now in a position to generalize the previous
procedure to the two-dimensional case, such as the IDG.
The unnormalized discrete modes were derived in [4] by
means of the transverse resonance diffraction method
(TRD). We will now proceed to consider the question of
their normalization over the guide cross sections in such a
manner that

_/L%(x,)’)(ﬁr(x,y)dxdy=8sr, (16)

In [4], the distribution at the interface y =0 and from
there over the whole cross section was derived in terms of
the Gegenbauer polynomials [6]

L C1/6[2_x]
N " | a

m

with normalization constant given by

1
wa2_4/3I‘(m + —)
N2 = 3

RERHE

orthonormalized in the range 0 < x < a /2 with respect to
the weight function

w(x) = (1_(2_x)z)~1/3

a

(17)

which implicitly satisfies the edge condition at the 90°
corners, thus ensuring rapid convergence. We had, namely,

the expression
An—1)

46,00 =W(x) ¥ (18)
m=10

The n-dimensional vector X resulted, within an unde-
termined constant (its norm), from the application of the
transverse resonance condition in the form of a diffraction
integral (TRD). Owing to the convergence properties of
(18), in fact, often just a single term suffices. Now we seek
to determine that constant so that the normalization con-
dition (16) is satisfied.

The field at the interface can also be expressed in terms
of the discrete Fourier components in the slot as

' 2x
—CYe—|.
v(7)

m

$,(x,0) = X E9,(x) (19)
n=0
where
3, nTX
¢n~ﬁcos—a—, 8,=2, n>0, 80=ﬁ
and
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By orthogonality over the slot, we have

N
= Z PmnXm::PnT'X

(20)
with "
P =——fa/2W(x)C1/6(2 )¢ (x) dx
; 8n\/a_(—1)m/2wf(m+l)JmHN(E)
-5 MT( )(ni)l/ﬁ 2 (21)

as given in [4, eq. (A.6)].
The field anywhere in the slot can therefore be expressed
as

Y (x,p) = X Eg(x)x.(y) (22)
n=0
where
_sing,(y+h) sy aa (AT
Xn()’)*——@h‘—, =e¢k;— B —(—)

The field at the interface can also be expressed, in terms of
the continuous Fourier components in the air region, as

¥,(x,0) =f0wdkx}f(kx)\/§ cosk.x  (23)

from which
E(k,))=P(k ) X.

The components of the vector P are given by

1 2x 2
P (k) =N~./(; ﬂW(x)C,},“(;)V - cosk xdx

(24)

a 1
"V 2 S, e
ak

n=—=as (21) is valid for any realn. (25)
a

The field anywhere in the air region can then be expressed

as

" )
¥, (x, y) = fo dk\/ = cosk,x e P(k,) - X. (26)

It is noted explicitly that for a discrete mode, the vialue
k2 =k2— B2 is fixed by the transverse resonance condi-
tion [4]. As (26) is a Fourier expansion in k,, taken now as
an independent variable, we must choose k, such that

k,=k2—k2,  k,>k
=— jyki-ki,, k. >k, (27)

The amplitudes E,, E(k,), X,, can be interpreted as volt-
ages in the equivalent network of Fig. 3, as indicated. This
network allows us to write by inspection the total trans-

A

!

Eo

g(kx) K

|

En

Fig. 3. Transverse equivalent circuit for the normalization of the dis-

crete modes of the IDG.

verse admittance matrix, as seen at the reference planes of
the interface, in the representation of (18). Looking into
the slot region, this is, elementwise,

wnu'OYkm == .]an cot qnh Pkann (283‘)
or, in matrix form,
w“oil_z - jz qn COt qnh Pn.PnT’ (28b)
n

Similarly, looking into the air region

- [o0]
omol = [k, (k) P(k)-Pr(k,) ke (29)
It is now recalled that the denominator of (8) is just jwp,
times the complex power for unit voltage at the reference
plane y =0 in the one-port situation of Fig. 2(b).
In the multiport situation of Fig. 3, where the voltages at
the reference plane are expressed by the vector X, the
equivalent is given by the scalar

p=-—jop X" Y- X=wu,X"-B-X

(30)

where
Y=Y+Y=B.

By partial differentiation with respect to k? at k;=k2,,
we obtain the actual normalization factor of the dlscrete

modes

dp

Ny=—=r po X" 2
=L "
9k’

kﬁ‘ 3k2

1 o0
= EXT-[ Y —(g,hcosec?q,h—cotq,h)P,P;

=0 9n
_]f

Upon use of (22) and (26), it is straightforward to check by
direct quadrature that the above expression just equals

o dkx

—P(k VP7(k)|-X. (31)

N Z ak2( anO‘tqnh)

+f dx, E

=/fs¢§(x,y)dxdy

akz( ]ky) =

(32)
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where it is noted that the derivative of the susceptance for
the nth or &, Fourier component is in fact identical to the
integral of the square of the y dependence.

In conclusion, if the as yet unspecified norm of X is
chosen so that N, =1 in (31), the orthonormalized distribu-
tion of the discrete mode is given by (22) for y < 0 and by
(26) for y = 0.

IV. DETERMINATION OF THE ORTHONORMALIZED
CONTINUOUS SPECTRUM OF THE IDG

Unlike the discrete spectrum, derived previously in [4]
within a normalization constant N, which could always be
determined, albeit laboriously, by direct integration, the
continuum was not reported before. It constitutes, in fact,
an example of a two-dimensional, nonseparable problem
which cannot be reduced to a uniform spectral-domain
description because of the change of cross section at the
interface.

As the cross section is two-dimensional, it is apparent
that an expansion of the continuum can be written in
terms of two independent wavenumbers, the third being
fixed by the wave equation. We choose (k. k,) = k, as the
two independent quantities and, correspondingly, develop
the field in the air region in terms of partial waves of the

type
2 2
— cosk,x\/ — sin(k,y+a) (33)
K T .

which highlights the correspondence with the slab case as
k,— 0. It is noted, however, that the “phase shift” « is
now a function of both k, and k, because of the nonsep-
arability caused by the presence of the corners.

It is noted that the transverse Green’s admittance func-
tion (8) only contains k }(k2); hence k,, k,, can be limited
to the interval 0 < k,, k, <co. Physically, this is a conse-
quence of choosing to represent the continuum by a set of
standing waves.

We require that the components of the continuum satisfy
the orthogonality conditions:

[y k)8 vk )
=6(k,—k.)-8(k,—k})
=08(k,— k). (34)

In the treatment of the discrete spectrum, we found it
convenient to expand the field at the interface in terms of
discrete basis functions individually satisfying the edge
conditions at the metal corners. This is not required of
individual components of the continuum, but only of the
total field. Therefore in consideration of the partial wave
expression (33) we now find it convenient to expand the
field at the interface directly in terms of the x dependence
of the partial waves, i.e., a continuum in k. This fact
imposes a generalization to the concept of the discrete
transverse admittance matrix ¥ we met in the previous
section as follows.

77T
E(ky, ky) ky
rrrrrrrrrr——A
Qlky)
2L
E(k'y,ky) Ky
rorr———

Fig 4. Transverse equivalent circuit for deriving the orthonormalized

continuum of the IDG.

The transverse equivalent circuit appropriate to the new
situation is shown in Fig. 4. The discontinuous interface
acts as an ideal transformer coupling slot components with
a different wavenumber nw/a and partial waves in air
with different wavenumber k.

We shall now generalize to two dimensions the method
described in Section II, eq. (10). This involves constructing
the Green’s function from an outward and an inward-
traveling wave at the interface y = 0.

An outward-traveling partial wave in the air region with
wavenumber k, and Fourier amplitude E(k ,) is expressed
as

N 2 .
V(x,y; k)= - E(k,)cosk xe™/kr.  (35)

Correspondingly, there exists a standing wave in the slot
expressible as

S 0,(k)e(x)x,(»). (36)

n=0,2,-

Vix,p;k,) =

The scalar continuity condition is replaced by
V(x,0;k,) =V(x,0; k,) (37)

which allows the coefficients Q,, in (36) to be determined
by orthogonality of the ¢,’s over the slot:

Q,(k.) =\/ga,,(—1>"/2

k. .

A Elk). (38)
e
a

Also, from the equivalent circuit of Fig. 4, the susceptance
looking into the slot, as seen from reference planes at
y =107, is given by the parallel combination of the trans-
verse transmission lines, corresponding to the various val-

ues of »n in the slot. These lines are terminated by a short
circuit at y = — h, as seen via the transformer @, namely

wpoB(ky, k) == Yq,cotq,h Q,(k,)Q,(k;). (39)

In the air region, the two different components &, and k’
do not couple and a component with y-directed wavenum-
ber k, propagates in the positive y direction with a
characteristic admittance k, /wp,. These facts imply that
the admittance is a delta function of k, with amplitude
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k,, namely

o 1 )
moB(keki) =k, Bk, k). (40)

Let B(k,k})= B+B. If E(k,) is set equal to unity in
(35), the complex power (times — jwp,) corresponding to
the components k, = (k,, k) is then given by

~ o0 ~
p(k,) = wuoE(k,) /O B(k,, k)E(k, k) dk,
= omg [ Bk, ky) dk. (41)
0

Hence, from (39) and (40)

1 T
p= ;ky - Zn:anOt q,h V72 8,0.(k,) (42)

[o.k)dk =)= 8,
0 2a

It is again useful to define a quantity of convenience
a(k,, k,) such that

= ! ) hﬁ i ) k 43
ta= — _— .
cot & P g,cotq, 22 , Qa(k,) (43)

y n

as

Using (43) in (8), we have then
1424 [2 5 _
ky~jkyc0ta - ; " Qn(bn(“x)Xn(y)SHla

2 [ ’
- cosk, x s1n(ky,y +a)
=¥ (x, y; k)Y (', y's k)

from which the components of the continuum can be
identified as

2
;kyRe

2
1!/()(7, y;kt)= ; Sina(kt)

Y 0.(k)e(x)x.(¥), y<O

(45)

It can be checked by direct integration that the orthonor-
malization condition (34) over the cross section is indeed
satisfied by (45) (see the Appendix).

2 .
=—coskxxsm(kyy+a), y=0.
T

V. THE GREEN’s FUNCTION OF THE IDG

Having constructed the complete, orthonormalized spec-
trum of the IDG for E* polarization, we are now in a
position to formulate its scalar Green’s function. The latter
is a prerequisite for the solution of discontinuity problems.

The scalar Green’s function G(r,#’) is the solution of
the inhomogeneous wave equation with a delta function
source located at »’, namely

V3G+e,kiG=8(r—1r") (46)

547

!
|
|
——
|
I

ke
kx

Fig. 5. Trigonometric decomposition of the wavenumber.

with the boundary conditions appropriate to E,. This
should not be confused with the two-dimensional g used
in Section II, which refers to the transverse wave equation,
in the process of determining the spectrum of the guide.

Inasmuch as the normalized mode spectrum is now
known, the Green’s function solution of (46) is found by
the classical method of expansion in eigenmodes [7], right
and left of the source function (2 <z’ and z > 2).

By imposing the continuity of G at the source point
z=2z" and by the condition that its derivative be discon-
tinuous there by the unit step, we recover the classical
expression for the eigenmode expansion of the Green’s
function valid at each side of the Source point:

G(r,#) = ¥ 3,34, 1) bl
r,r')= - x, y)P x', y)e FE?
S 2jB " '

the summation being over the spectrum. Referring, in
particular, to a guide with a single bound mode and
making explicit the contribution of the continuum, (47)
can be rewritten as

1 ,
G(r,r')= ﬁ‘l’s("a Y)W (X, y)e P
iRz ‘

+/(;wdkx/;wa7€y—2—jlg-—

'1P(xa s k,)\,b(x’, Y'; kt)

where B =k§ —k;.

The evaluation of the double integral in the wavenumber
space is conveniently carried out by trigonometric trans-
formations, as illustrated in Fig. 5. These are

(47)

(48)

B=kqcosn (49a)
k,=kgsing (49b)
k,=k,cos0 (49¢)
k,=k,sird. (49d)

Owing to (49), we have
dk, dk, _ k,dk,dé
B B

Regarding the path of integration in the n and  planes,
inasmuch as we have chosen expansions in terms of k., k,

=k,dndéd.
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real and such that 0 <k,, k, <oo, 6 is a real angle:

T

0<g 6 < —2‘ .

The integration in the complex 7 plane, however, runs
over the real interval

T
O<Ren<5 Imy=20

and then over the imaginary interval

a
Re'n=5 0<Imy <oo.

If the nonradiative continuum corresponding to k,> k is
neglected, then so is the contribution of the latter interval
and 7 is a real angle

O<n< 5
The above trigonometric transformation is in fact a pre-
liminary to the evaluation of the far field radiated by a
dipole.

VI. SCATTERING BY A SMALL, THIN TRANSVERSE
DIPOLE ON THE AIR—-DIELECTRIC INTERFACE

The transverse electric field at the air—dielectric inter-
face y =0 is near its maximum value. The interface also
constitutes the most accessible plane of the guide. This is
therefore an ideal location for a source, such as a diode,
placed across the slot aperture or for a discontinuity, such
as a metal strip or disk, with a view to realizing circuit
elements or a leaky wave antenna. As an example of the
application of the Green’s function (48), we shall therefore
consider the scattering by a small, thin transverse current
element, representing an independent source of an induced
one, located at z =0, sufficiently thin and small to be
representable as

J(X,Z)=J08(Z), 0<IX|<E
0 ! 50
= —<
’ 2\|Xl ( )

with constant J,. The scalar Green’s function (48) is that
pertaining to an x-directed electric field distribution as-
sumed as the source of the EM field. If the source term is
constituted by an x-directed electric current J, then the
electric field E, is related to G through the x component

of the vector potential A4, given by
+1/2

A(r)=~pof " °G(r;x,0,0(x)dx (1)
—1/2
and the resulting scattered field is
1 92
El=— jwA, + - -4, (52)
T Jwpgey dx
2
+1/2
= 1+ — — | GI(x") dx’
Jawo [\ 1+ 1 5w | G () dx (53)
Wik Js(x, ) 7/2 /2 .
=——J,| ———=De /Pl 1 d dik
L2 st

. 1[;(_)(, y:n, H)D(n, 0)e_.1k0°0571|zl

where
- 1 32
¥, = 1+%5'3*; ¥, (54a)
0
- 1 9?2
\P(x»y,n,0)= 1+;€~EW \P(X’)’ﬂl,a) (54b)
0

which can be evaluated directly from (22), (26), and (45)
accordingly as y <0 (slot region) or y > 0.
In (53) we have

(12 () e 0 Ly
Ds—2/0 ¢S(x,0)dx~Nol[1+(3a)] (55)

using the expansion (18) with a single term, and

D(n,8) = 2[()1/24/(X’,0; 1,8) dx’

. kol

4 sin (sm ncos—
= — §i [/ 56
Wsma(n, ) ksinmcos 8§ (56)

where

L i i ) ho (57 )
to=-—""— Vs t a

core kqsinnsing , =5, V 2a nCndn Oty

na

2
q3=uz-(—) + k2sin’y (57b)
a

2 ns2 | o koa
Q,=1 — 8,(—1)"sin smncosﬂ—)
am 2

sinncosd k,

' nw\?’
(ko sinncosﬂ)2—(—~)
a

In spite of its apparent complexity, the double integral (53)
is in fact amenable to straightforward numerical integra-
tion. Moreover, the trigonometric form of the integrand
lends itself naturally to the evaluation of the far field by
the saddle point method.

VII. FAR-FIELD PATTERN OF THE DIPOLE:
ExcitaTioN OF THE FUNDAMENTAL MODE

The evaluation of the far field is effected by going over
to cylindrical coordinates in the radiation integral in (53),
as shown in Fig. 6:

x = Rcosw
y=Rsinw
so that
k.x+k,y=koRsinncos(f—w).

(58)

Upon using the symmetry of the integrand with respect to
8, the radiation integral in (53) can be rewritten as

Jopo  ras
El= J d
* 4q Ofo K

"2 48k, siny
—7/2
-(1—sin?ncos?8)D(n,0)

—Jja, e*JkoR sinn cos(f—w)

(59)

4
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DIELECTRIC
TAPER

RECTANGULAR WAVEGUIDE

Fig. 6. Transverse dipole on IDG, showing transition from rectangular
waveguide.

There is no pole in the integrand, so that when k,R > 1,
by using the saddle point method we obtain

AT A , (T
Ef=— T WD(E’ w)e‘f"‘(”/z’w)e”/kOR. (60)
The radiation pattern is then given by
2 D ™ 2
E;(w) _’W)
flw) = ;s—(w—) =Sin4W;—-%.—W (61)
2 ( 272 )
From (56) and (57) we deduce
.. (ko
T 4 7 : sm(T COSW)
p[Zw) = Lna( T w)—2 )
(2,w) Wsma(z,w) PR (62a)
(T 21
D(E,—z—)=;. (62b)
Hence, the resulting radiation pattern is
T T 2
f(w)=(§sm WD(E’W)) (63)

showing the influence of the IDG geometry on the radia-
tion pattern while sin?w represents the usual pattern of a
dipole in an infinite space.

The radiation pattern is plotted in Fig. 7 for various
values of kyl,!/a, and is compared with that of an iso-
lated dipole in free space, namely, sin’w. It is apparent
from the figure that the effect of the inset guide backing of
the dipole is to narrow considerably the radiation pattern,
as a result of the presence of the ground plane. Moreover,
the pattern is only weakly dependent on the frequency, as
the latter only affects f(w) via « and the ratio in (62a).

The dipole also excites a forward- and a backward-
traveling wave in the fundamental mode, whose amplitude
is determined by multiplying (53) by ¢, and integrating
over S. This is

P
Ay =A7=— JOBSffopsxlzsdxdy

‘o‘LO l)s
=y 64
2 OBS ( )

1] = 0.
/8 0.5

(dB)

uniform current distribution

4 ~5

(a)

f = 10 GHz

uniform current distribution

-10
‘

-15

-20

N =
8 10
X10 —

(®) ‘
Fig. 7. Far field pattern for the dipole of Fig. 6.

where we have neglected weak “overlapping” terms of
with - (radiation resistance) and 92/32), (coupling dif-
ferent Fourier components in the slot).

In the .above, J, may be the amplitude of an indepen-
dent source, say a diode, or that of an induced one, say the
current induced on a metal strip by the fundamental mode
Y, itself, incident with unit amplitude. In the latter case, J,
is determined rigorously by the condition that the total
field on the metal strip vanish.

Within the scope of small dipole approximation adopted
in this section J,= H,, and again neglecting second de-
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Fig. 8. Reflection and transmission coeffi .ient of small dipole.

rivatives with respect of x, i.e., by assuming the propagat-
ing mode to be pure TE rather than LSE and separable,
and only retaining the contribution of the slot region, we
further obtain
1
JO = EanOt qnh P02n'

Wiy n

(65)

Hence by substituting the above approximate amplitude
in (64), we can identify A with the reflection coefficient
T of the metal strip, i.e.,

¥g,cot g,k P2, 1\?
I'=d; =2z——mm/|14+| — 66
s 2/33 )]

which is valid for thin strips //a <1. When two identical
dipoles are located a quarter wavelength apart, cancella-
tion of the overall reflection coefficient occurs. This effect
is illustrated in Fig. 8, showing the magnitude of the
reflection coefficient versus frequency for various dipole
lengths, computed from (66) by elementary network analy-
sis. The spacing between the two dipoles (0.6 cm) is such
that £, =9.875 GHz corresponds to a quarter wavelength
in the guide.

VIL

We have derived the complete orthonormalized spec-
trum of the IDG from basic principles as an original
example of a nonseparable two-dimensional problem in-
volvmg both a closed region, an open region and diffract-
ing corners.

In particular, the discrete modes are expressed in terms
of suitable functions at the air—dielectric interface, individ-
vally satisfying the edge conditions, whereas the continu-
ous modes are expressed conveniently in terms of partial
waves in the air region. The Green’s function of the guide

CONCLUSIONS

1s then derived in terms of the complete spectrum, a step
that is prerequisite to the rigorous solution of discontinuity
and radiation problems in IDG. An application is given to
the scattering by a small transverse dipole placed at the
air—dielectric interface, obtaining analytically the far field
and quasi-analytically the near field.

APPENDIX
DirecT CHECK ON ORTHONORMALITY OF THE
CONTINUUM

We want to verify that the condition

/dedy¢(x,y;kt)¢(x’y;kt) =0(k,—k;) (A1)

is satisfied by direct integration. Define by I, the integral
over the slot cross section. This is given by

f= [ [° & £0,(k,)0, (k) sinasing

2 sing,(y+h) smqn(y-l-h)

— A2
“0,(x) ¢} (x) ~ sing, sing/h (A2)
where
nw\?
—a(kik)  ai= (e, —Dki—ki=( =]
By orthogonality of the ¢, and integration over y, we have
sina sina 1
I = k —_— .
ZQ( £ Q. (k) sing,h sing,h =
[Sm(qn—qn)h Sln(qn+q;)h}
~ 4, 9.t 4»
2 sinasina’

= T2 k)0,(k)

(g, cotg,h—q,cotq,h).
In the air region, we have
[o.0) o0 2
I,= dx | dy—cosk _xcosk!x
2 f(; /o & * *
2 . .
-;sm(kyy+a)sm(k}’,y+a')

=6(kx—k;>{s(ky—k;)——

[sin(a—a’) sin (a+ &) }}
k,—k; k,+k;
2 sinasina’

:8(kx_k),c){8(ky_k}/')_ S
y Y

-(k;cot o' =k, cot a)} .
Satisfaction of (Al) implies

L+ 1,=8(k,—k})8(k,—k}). (AS)
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If the second term in (A4) equals I;, this is indeed the
case. It is now verifiable that (A5) holds provided «a is
chosen such that

Integrating w.r.t. k; from 0 to co, we recover

_ ,
kycota=§ 7o 3 Qalk)g,00tg,h (A7)
which is just our definition (43) of a.
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