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Mode Completeness, Normalization, and
Green’s Function of the Inset

Dielectric Guide

T. ROZZI, SEN1ORMEMBER, IEEE, AND LIZHUANG MA

Abstract — The inset dielectric guide (IDG) is an easy-to-fabricate alter-

native to image line that is also less sensitive to loss by radiation at

unwanted discontinuities. The discrete spectrum of the IDG was recently

analyzed by the transverse resonance diffraction (TRD) method.

In this paper we complete the characterization of the spectrum to

include the continuum. We atso address from a fundamental viewpoint the

question of its orthonormatization, and determine the Green’s function of

the guide, which is an essential prerequisite to the analysis of IDG

components and of IDG antenna feeds. An application is given to the

scattering by a dipole on the air-dielectric interface.

I. INTRODUCTION

c ONSIDERABLE EFFORT has been spent on the

development of transmission media suitable for mi-

crowave and millimeter-wave communications, obvious ex-

amples being finline and image line. At high frequencies,

as circuit dimensions and tolerances become smaller, the

cost of such circuits rises. High circuit costs may in fact

become the limiting factor to the ever-increasing commer-

cial development in millimeter-wave technology. Thus, the

ease of manufacture and capability for mass production

are becoming as important a criterion as the circuit perfor-

mance of such media.

Image line is a recognized low-loss transmission medium,

but its main disadvantage besides manufacturing difficul-

ties is its radiation loss from all practical components. In

order to confine the field more to the structure, trapped

image guide has been proposed [1], but this is even harder

to make, especially for small guide dimensions. In order to

overcome such manufacturing difficulties, inset dielectric

guide (IDG), shown in cross section in Fig. 1, has been

proposed as a low-cost alternative [2]. IDG, which is just a

rectangular groove filled with dielectric, has many of the

advantages of the trapped image guide without its fabrica-

tion problems.

The IDG structure has been analyzed previously, by

Zhou and Itoh [3], as an intermediate structure in the

analysis of trapped image guide. This analysis used the

effective dielectric constant (EDC) method and it gave

useful and accurate approximate results for the fundamen-

tal mode.
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The 90° edge, however, imposes a singularity in the

transverse fields, which is important for the accurate

evaluation of field distributions and radiation properties.

Consideration was given to the above problem in the

rigorous, full hybrid treatment in [4] using the method of

transverse resonance diffraction (TRD). The discrete spec-

trum was evaluated, together with propagation losses and

Q factors, for the fundamental and a number of higher

order discrete modes. Those results show that, away from

cutoff, propagation losses are dielectric dominated. More-

over, for practical aspect ratios, assuming a single LSE or

LSM potential gives a very good description, provided,

that is, the edge conditions are still accounted for in the

field distribution assumed over the slot aperture, which

implies that the potential is intrinsically nonseparable.

The IDG, however, is an open waveguide and, conse-

quently, its spectrum includes a continuous range of modes.

Excitation of the latter takes place due to discontinuities,

particularly when these are located close to the air–dielec-

tric interface, such as metal posts (e.g. diodes) or radiating

dipoles, if the IDG is to be used as a leaky wave antenna.

Therefore, with a view to analyzing practical components

in IDG, it is necessary to obtain a complete spectral

characterization, inclusive of the continuum. Once the

complete spectrum is found, it is possible to construct

the appropriate Green’s function of the guide for use in

the treatment of discontinuity problems. A mathematical

difficulty arises at this point inasmuch as the spectral

components need to be orthonormalized over the guide

cross section.

This trivial task in classical waveguide becomes nontriv-

ial and tedious for guides of inhomogeneous separable

cross section, particularly if a continuum is involved.

In the IDG the problem is essentially complicated by

the nonseparable nature of the two-dimensional cross sec-

tion, containing diffraction edges (the metal corners) at the

interface between two distinct regions (the slot and the air

region). For the one-dimensional separable case (e.g. the

multilayer slab), an elegant method based on the trans-

verse equivalent circuit interpretation and the formal prop-

erties of the transverse Green’s function can be found in

textbooks such as [5].

A solution for the two-dimensional, nonseparable, open

case such as the IDG has not been reported before.
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Fig. 1. IDG geometry

In this paper, it will be shown how the transverse

equivalent circuit analogy can be generalized to transverse

resonance diffraction and how these concepts can be used

to determine the orthonormalized discrete and continuous

spectrum of the IDG in the LSE\LSM description.

We will deal first with the question of the normalization

of the discrete spectrum in the same representation of the

singular field over the slot aperture which was adopted in

the TRD solution [4] and then derive the orthonormalized

continuum.

The analysis will be developed for the even LSE (TEY)

polarization, having EY = O and Ex as the main electric

field component. The scalar Green’s function is subse-

quently obtained and applied to the scattering of a thin

transverse dipole at the air–dielectric interface.

II. THE NORMALIZED SPECTRUM OF THE SLAB

WAVEGUIDE

If the effect of the metal corners of the slot could be

ignored, i.e., the side walls were infinitely far removed

from each other, the IDG would reduce to a dielectric slab

over a ground plane. It is therefore instructive to retrace

briefly the procedure involved in determining the normal-

ized complete spectrum of the grounded slab, illustrated in

Fig. 2(a). A detailed discussion can be found in [5].

If the expansion of the field takes place in terms of the

transverse wavenumber in the air region, kY, taken as an

independent quantity, the wavenumber in the z direction,

~, is determined by

The completeness of the TE spectrum of the slab can then

be stated as

x*s(Y)!s(Y’)+Jm~ky+(Y;ky)+(Y’;ky)=~(Y-Y’)
s

where the summation is over the finite number of surface

waves, the integral is over the continuum, and the ortho-

Y

7-
———.——.

/

d —-—————/
(a) (b)

Fig. 2. (a) The metal-backed dielectric slab waveguide and (b) its

transverse equivalent circuit.

normalization is such that

Jmws(mrb)=lr (3a)
o

--

JWWAY)+(Y+,)=O (3b)
0

Jm~Yv(Y; ky)+(Y; k;)=~(ky-k;).(SC)
o

Analogous expressions hold for the TM case with the

weight function I/e(y).

It is a well-known general property of the Sturm–

Liouville equation, in this case the transmission line equa-

tion for propagation in the y direction, that the Green’s

function integrated over a path C in the complex k; plane

to include all singularities yields the delta function. The

singularities are constituted by the set of discrete poles

corresponding to the discrete spectrum and branch line

corresponding to the continuum, namely

1
——

$( )g y,y’; k: dk~=8(y -y’).
2vj .

(4)

The Green’s function is constructed from two independent

solutions of the transverse transmission line equation:

~= sinq(y+h)
—. (5)

sin qh
where

~z=c,k~–~’

=k:+(c, –l)k:=kf+u’ (6)

satisfying the boundary conditions for y <0 and

~= ~-jk,y (7)

s~tisf~ing the boundary conditions for y >0 such that

V=V=l at y=O.

We have then

where Y is the total admittance of the transverse equiv-

alent circuit of Fig. 2(b) (the Wronskian of the transmis-

sion line equation, which is independent of position):

CW@’= ky – .jqcot qh. (9)
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It is noted for future use that with the above choice of

voltage amplitudes, Y represents the complex power of the

transverse equivalent circuit.

It can also be seen that the occurrence of a pole of g in

the complex k; plane at k,= k;,, say, coincides with the

vanishing of the total susceptance of the transverse equiv-

alent network. In order to recover (2) from (4), it is then

sufficient to isolate the residues of the poles and modify

the integration path so as to go around the branch line in

the k? plane, by which process (4)canbe rewritten, using

(5) and (6), as

‘~+s(~)+s(~’)+~mdky+(~;ky)$(~’;ky). (10)
s

In (10), it is then possible to make the identification

“s(y)=[-J~~ii“‘<0‘1’)
and similarly for y >0, yielding the well-known expres-

sions for the TE surface wave of a grounded slab:

sinq,(y+h)
+,( ’)=-’4, ‘<O (12a)

sin q~h ‘

= A,e-Y$Y, ‘>0 (12b)

with

r

2
As= — sin q,h, y.+ q~cot q,h = O. (13)

h+!
Y,

A substantially analogous procedure leads to the de-

termination of the component of the continuum i) ( y, ky).
Let us introduce in (9) the following quantity of con-

venience:

cot a = ; cot qh
Y

(14)

and substitute (14) into (8). The resulting expression for a

component of the continuum corresponding to the value

ky, O < kY <m, of the y wavenumber is then

r2 sinq(y+k)
*(y:ky) = ~ sins Sinqh , y <0 (15a)

[

2
—— — sin(k,y + a), ‘>0 (15b)

T

which satisfy implicitly the orthonormalization conditions

(3). Itis noted that the angle a above represents in fact the

phase shift a ray with propagation constant (ky, ~ ) under-

goes upon impinging on the slab and reemerging from it.

III. NORMALIZATION OF THE DISCRETE SPECTRUM

OF THE IDG

We are now in a position to generalize the previous

procedure to the two-dimensional case, such as the IDG.

The unnormalized discrete modes were derived in [4] by

means of the transverse resonance diffraction method

(TRD). We will now proceed to consider the question of

their normalization over the guide cross sections in such a

manner that

In [4], the distribution at the interface y = O and from

there over the whole cross section was derived in terms of

the Gegenbauer polynomials [6]

with normalization constant given by

orthonormalized in the range O < x < a/2 with respect to

the weight function

(012x 2 -1/3
w(x)= 1– ; (17)

which implicitly satisfies the edge condition at the 90°

corners, thus ensuring rapid convergence. We had, namely,

the expression

()
+,(X,O) =w(x)2(i’) #:/’ ~ . (18)

m=O m a

The n-dimensional vector X resulted, within an unde-

termined constant (its norm), from the application of the

transverse resonance condition in the form of a diffraction

integral (TRD). Owing to the convergence properties of

(18), in fact, often just a single term suffices. Now we seek

to determine that constant so that the normalization con-

dition (16) is satisfied.

The field at the interface can also be expressed in terms

of the discrete Fourier components in the slot as

+,(X,O) = ~ En@n(x) (19)
~=o

where

8n n TX
+n=~cos~, 8n=2, n>O, 80=@



ROZZI AND NM: MODE COMPLETENESS, NORMALIZATION, AND GREEN’S FUNCTION 545

By- orthogonality over the slot, we have

E.= ~ PmnXm=P;” X (20)
~=o

with

as given in [4, eq. (A.6)].

The field anywhere in the slot can therefore be expressed

as

y,(x, y) = ~ E#~(x)xH(y) (22)
~=o

where

The field at the interface can also be expressed, in terms of

the continuous Fourier components in the air region, as

{
+$(x, f)) =~%kX@cX) : COS kXx (23)

from which

~(kX)=P’(kX). X. (24)

The components of the vector P are given by

al
——F —Pmn,

25? dn

akX
~=— as (21) is valid for any real n. (25)

v

The field anywhere in the air region can then be expressed

as

+J(x, y)=~wdkX
[

~ cos kXx e-~~’yP’(kX) .X. (26)

It is noted explicitly that for a discrete mode, the wdue

k~~= k: – @,2is fixed by the transverse resonance condi-

tion [4]. As (26) is a Fourier expansion in kX, taken now as

an independent variable, we must choose kY such that

kY, = {~ , k,, > k.

= ‘j{=> ‘X>ktS-
(27)

The amplitudes E., ~(kX), X~ can be interpreted as volt-

ages in the equivalent network of Fig. 3, as indicated. This
network allows us to write by inspection the total trans-

-

t % % t
● ✎
✎ P .
. .

= “mF(kx) E(kx) kY

m
En L

z

I I I I

Fig. 3. Transverse equivalent circuit for the normalization of the dis-

crete modes of the IDG.

verse admittance matrix, as seen at the reference planes of

the interface, in the representation of (18). Looking into

the slot region, this is, elementwise,

‘~OFk?n = – j~q.cot%h ‘knpnm (28a)
n

or, in matrix form,

upo~= – j~q.cot q.hP..P.’. (28b)
n

Similarly, looking into the air region,

upo~=jmky(k,)p(k.,)p’(k.) dk.. (’29)
o

It is now recalled that the denominator of (8) is just jopo

times the complex power for unil voltage at the reference

plane y = O in the one-port situation of Fig. 2(b).

In the multiport situation of Fig. 3, where the voltages at

the reference plane are expressed by the vector X, the

equivalent is given by the scalar

p = – jupoX’. Y.X = UpoX”. B.X (30)

where

By partial differentiation with respect to k; at k;= k;,,
we obtain the actual normalization factor of the discrete

modes

dp 8B
N~=— = @pox’” — . ‘r

dk: k;, ak; k,
,,,

1‘~ P(kX)P’(kX) oX. (31)-j~ k
ys

Upon use of (22) and (26), it is straightforward to check by

direct quadrature that the above expression just equals

N,=~E: ~(-qncotqnh)

n Y

J

a
+ —(-jky)=

*dxk~2(kx) Jkt
o

=jj+:(w+f.d! (32)
s
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where it is noted that the derivative of the susceptance for

the n th or kX Fourier component is in fact identical to the

integral of the square of the y dependence.

In conclusion, if the as yet unspecified norm of X is

chosen so that N, = 1 in (31), the orthonormalized distribu-

tion of the discrete mode is given by (22) for y <0 and by

(26) for y >0.

IV. DETERMINATION OF THE ORTHONORMALIZED

CONTINUOUS SPECTRUM OF THE IDG

Unlike the discrete spectrum, derived previously in [4]

within a normalization constant N,, which could always be

determined, albeit laboriously, by direct integration, the

continuum was not reported before. It constitutes, in fact,

an example of a two-dimensional, nonseparable problem

which cannot be reduced to a uniform spectral-domain

description because of the change of cross section at the

interface.

As the cross section is two-dimensional, it is apparent

that an expansion of the continuum can be written in

terms of two independent wavenumbers, the third being

fixed by the wave equation. We choose (kX, KY) = k, as the

two independent quantities and, correspondingly, develop

the field in the air region in terms of partial waves of the

type

which highlights the correspondence with the slab case as
kX + O. It is noted, however, that the “phase shift” a is

now a function of both kX and kY because of the nonsep-

arability caused by the presence of the corners.

It is noted that the transverse Green’s admittance func-

tion (8) only contains k~(k~); hence kX, k, can be limited

to the interval O < kX, kY <m. Physically, this is a conse-

quence of choosing to represent the continuum by a set of

standing waves.

We require that the components of the continuum satisfy

the orthogonality conditions:

J-J(y x,y; kX, kY)+(x, y:k:, kj)dxdy
s

In the treatment of the discrete spectrum, we found it

convenient to expand the field at the interface in terms of

discrete basis functions individually satisfying the edge

conditions at the metal corners. This is not required of

individual components of the continuum, but only of the

total field. Therefore in consideration of the partial wave

expression (33) we now find it convenient to expand the

field at the interface directly in terms of the x dependence

of the partial waves, i.e., a continuum in kX. This fact

imposes a generalization to the concept of the discrete

transverse admittance matrix Y we met in the previous

section as follows.

1 --’J-qE(kx, ky) ky

Q(kx)

I

z p

1
E(k, x,ky)

kY

Fig 4. Transverse equivalent circuit for deriving the orthonormalized
continuum of the IDG.

The transverse equivalent circuit appropriate to the new

situation is shown in Fig. 4. The discontinuous interface

acts as an ideal transformer coupling slot components with

a different wavenumber n n/a and partial waves in air

with different wavenumber kX.
We shall now generalize to two dimensions the method

described in Section II, eq. (10). This involves constructing

the Green’s function from an outward and an inward-

traveling wave at the interface y = O.

An outward-traveling partial wave in the air region with

wavenumber kt and Fourier amplitude ~(kt) is expressed

as

(-T

~(x, y;kt)=
/

: ~(kt)coskXx e-Jk,y. (35)
T

Correspondingly, there exists a standing wave in the slot

expressible as

‘i(x, Y;k~) ‘~=,:. Qn(k.)%(x)x.(Y). (36)
>!

The scalar continuity condition is replaced by

fi(x,O; kt)=~(x, O;kt) (37)

which allows the coefficients Q. in (36) to be determined

by orthogonality of the on’s over the slot:

Qn(kX) =
r

: 8.(–1)”’2

k,a k,
.sin —

2

()

,fi(k,). (38)
k:. ?

a

Also, from the equivalent circuit of Fig. 4, the susceptance

looking into the slot, as seen from reference planes at

y = O‘, is given by the parallel combination of the trans-

verse transmission lines, corresponding to the various val-

ues of n in the slot. These lines are terminated by a short

circuit at y = – h, as seen via the transformer Q, namely

~Po~(k.> k;) = – ~qncotg.k Q.(k. )Q. (k:)- (39)
n

In the air region, the two different components kX and k:
do not couple and a component with y-directed wavenum-

ber kY propagates in the positive y direction with a

characteristic admittance ky/up o. These facts imply that

the admittance is a delta function of kX with amplitude
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kY, namely

tiPoi(kx> k;)= ;k., a(kx-”k;). (40)

Let ll(k, kj) = 5+ ~. If fi(k,) is set equal to unity in

(35), the complex power (times – jupo) corresponding to

the components k,= (kX, ky) is then given by

p(kf) = q@(kt)jmB(kX, kj)~(k:, k}) dkj

‘~~,~%~.k;)dk;. (41)

Hence, from (39) and (40)

p = ~k, - ~q.cotq~h &8HQn(kX) (42)
n

as

It is again useful to define a quantity of convenience

a(kX, kp) such that

Using (43) in (8), we have then

:kyRe[+~cota]=&’Qn@n(x)xn(y)sina
2

.— coskXx’sin(kjy’+ a)

-y~x,y;k, )t(x’,y ’;k,)

from which the components of the continuum can be

identified as

{
+(x, y;k,) = : sina(kf)

“;Q.(L)%(x)x.(Y)> Y<O

2
.— cos kXx sin(kYy + a), y z O. (45)

T

It can be checked by direct integration that the orthonor-

malization condition (34) over the cross section is indeed

satisfied by (45) (see the Appendix).

V. THE GFtEEN’S FUNCTION OF THE IDG

Having constructed the complete, orthonormalized spec-

trum of the IDG for E x polarization, we are now in a

position to formulate its scalar Green’s function. The latter
is a prerequisite for the solution of discontinuity problems.

The scalar Green’s function G(r, r’) is the solution of

the inhomogeneous wave equation with a delta function

source located at r’, namely

V2G+ c,k~G=8(r– r’) (46)

p

ky

kx

Fig. 5. Trigonometric decomposition of the wavenumber.

with the boundary conditions appropriate to EX. This

should not be confused with the two-dimensional g used

in Section II, which refers to the transverse wave equation,

in the process of determining the spectrum of the guide.

Inasmuch as the normalized mode spectrum is now

known, the Green’s function solution of (46) is found by

the classical method of expansion in eigenmodes [7], right

and left of the source function (z < z’ and z z z’).

By imposing the continuity c~f G at the source point

z = z’ and by the condition that its derivative be discon-

tinuous there by the unit step, we recover the classical

expression for the eigenmode expansion of the Green’s

function valid at each side of the source point:

1
G(r, r’) = ~ —+,(x, y)+,,(x’, y’)e-JB’lz-”l (47)

s 2JP,

the summation being over the spectrum. Referring, in

particular, to a guide with a single bound mode and

making explicit the contribution of the continuum, (47)

can be rewritten as

‘I)(x, Y; k,)+(~’> Y’; ~,) (48)

where /3 = {~.

The evaluation of the double integral in the wavenumber

space is conveniently carried out by trigonometric trans-

formations, as illustrated in Fig. 5. These are

fl=kocosq (49a)

k,= kosinq (49b)

kX = krco:$d (49C)

kY = k, sirlfl. (49d)

Owing to (49), we have

dkX dky k, dk, d61

P = P ‘=k’dqde”

Regarding the path of integration in the q and f3 planes,

inasmuch as we ‘have chosen expansions in terms of kX, kY
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real and such that O< kX, k, < m, O is a real angle: where

0<8<; . [) I a2
J,= 1+7—

ki ~x2 $S
(54a)

The integration in the complex q plane, however, runs

over the real interval [1;(x$y,’q,~)=1+*S
O<Req<~

+(x, y,q, e)
Imq=O

(54b)
o

and then over the imaginary interval which can be evaluated directly from (22), (26), and (45)

If the nonradiative continuum corresponding to k,> k. is
neglected, then so is the contribution of the latter interval

and q is a real angle

O<?l<:.

The above trigonometric transformation is in fact a pre-

liminary to the evaluation of the far field radiated by a

dipole.

VI. SCATTERING BY A SMALL, THIN TRANSVERSE

DIPOLE ON THE AIR–DIELECTRIC INTERFACE

The transverse electric field at the air–dielectric inter-

face y = O is near its maximum value. The interface also

constitutes the most accessible plane of the guide. This is

therefore an ideal location for a source, such as a diode,

placed across the slot aperture or for a discontinuity, such

as a metal strip or disk, with a view to realizing circuit

elements or a leaky wave antenna. As an example of the

application of the Green’s function (48), we shall therefore

consider the scattering by a small, thin transverse current

element, representing an independent source of an induced

one, located at z = O, sufficiently thin and small to be

representable as
7

J(x,z)=.lea(z), o+

1
= o, ~ < 1X1 (50)

with constant .1O.The scalar Green’s function (48) is that
pertaining to an x-directed electric field distribution as-

sumed as the source of the EM field. If the source term is

constituted by an x-directed electric current Y, then the

electric field E. is related to G through the x component

of the vector potential A, given by

AX(7) = –po~_:~(r; x’,O,())J(X’) dx’ (51)

and the resulting scattered field is

1 a2
E;= – jaAX + — —AX

jopoto ax2

H

1 6’2
= jupo ‘/’2 l+——

k; ax2
)

GJ(x’) dx’
– [/~

(52)

(53)

accordingly as y <0 (slot region) or ys O.

In (53) we have

[N]Q=2~+s(Lo)- 12;1 1+ ~
o

using the expansion (18) with a single term, and

D(q,O)= 2~/’2$(x’,0; ~,6)dx’
o

( kol
sin sin q cos 9 ~

=~sina(q, O) 1
kosinqcos8

where

1
cot a = E ~ LQnqn@ qnhkosinq sind ,,=0,2, 2a

()

2

~:=”z– : + k~sin2 q

r
Q,,= :

(
f!in(–1)”’2sin sinqcosdy

2 1

sinq cos 6 k.

u
(kosinqcos@)2- ~ 2“

(55)

(56)

(57a)

(57b)

In spite of its apparent complexity, the double integral (53)

is in fact amenable to straightforward numerical integra-

tion. Moreover, the trigonometric form of the integrand

lends itself naturally to the evaluation of the far field by

the saddle point method.

VII. FAR-FIELD PATTERN OF THE DIPOLE:

EXCITATION OF THE FUNDAMENTAL MODE

The evaluation of the far field is effected by going over

to cylindrical coordinates in the radiation integral in (53),

as shown in Fig. 6:

X= RCOSW

y= Rsinw

so that

kXx+kYy =koRsinqcos(O– w). (58)

Upon using the symmetry of the integrand with respect to

0, the radiation integral in (53) can be rewritten as

(1-sin2qcos2t9) D(q,tl)

.e–Ja. e–Jko Rsinqcos(&w) (59)
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Fig. 6. Transverse dipole on IDG, showing transition from rectangular
waveguide.

There is no pole in the integrand, so that when kORs> 1,

by using the saddle point method we obtain

@OJ
E~=–

,()
— sin’w ~ ~, w e-J”trz2,wJe-J’o’. (60)

2R

The radiation pattern is then given by

2

()

2

E;(w)
D ;,W

f(w) = —

()

= sin4 w (61)
E: :

()
D ;,; “

From (56) and (57) we deduce

(62b)

Hence, the resulting radiation pattern is

( ))

2

f(w) =( fisin2wD ~,w (63)

showing the influence of the IDG geometry on the radia-

tion pattern while sin2 w represents the u’sual pattern of a

dipole in an infinite space.

The radiation pattern is plotted in Fig. 7 for various

values of kol, Z/a, and is compared ivith that of an iso-

lated dipole in free space, namely, sin2 w. It is apparent

from the figure that the effect of the inset guide backing of

the dipole is to narrow considerably the radiation pattern,

as a result of the presence of the ground plane. Moreover,

tlie pattern is only weakly dependent on the frequency, as

the latter only affects ~(w) via & and the ratio in (62a).

The dipole also excites a forward- and a backward-

traveling wave in the fundamental mode, whose amplitude

is determined by multiplying (53) by +. and integrating

over S. This is

(64)
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Fig. 7. Far field pattern for the dipole of Fig. 6.

where ewe have neglected weak “’overlapping” terms of ~,

with + (radiation resistance) and d 2/8~+, (coupling dif-

ferent Fourier components in the slot).

In the above, Jo may be the amplitude of an indepen-

dent source, say a diode, or that of an induced one, say the

current induced on a metal strip by the fundamental mode

~, itself, incident with unit amplitude. In the latter case, Jo
is determined rigorously by the condition that the total

field on the metal strip vanish.

Within the scope of small dipc}le approximation adopted
in this section Jo= Hz, and again neglecting second de-
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Fig. 8. Reflection and transmission coeffj ,,ent of smafl dipole.

rivatives with respect of x, i.e., by assuming the propagat-

ing mode to be pure TE rather than LSE and separable,

and only retaining the contribution of the slot region, we

further obtain
1

~Po n

Hence by substituting the above approximate amplitude

in (64), we can identify As– with the reflection coefficient

r of the metal strip, i.e.,

which is valid for thin strips l/a <1. When two identical

dipoles are located a quarter wavelength apart, cancella-

tion of the overall reflection coefficient occurs. This effect

is illustrated in Fig. 8, showing the magnitude of the

reflection coefficient versus frequency for various dipole

lengths, computed from (66) by elementary network analy-

sis. The spacing between the two dipoles (0.6 cm) is such

that ~. = 9.875 GHz corresponds to a quarter wavelength

in the guide.

VII. CONCLUSIONS

We have derived the complete orthonormalized spec-

trum of the IDG from basic principles as an original

example of a nonseparable two-dimensional problem in-

vol&g both a closed region, an open region and diffract-

ing corners.

In particular, the discrete modes are expressed in terms

of suitable functions at the air-dielectric interface, individ-

ually satisfying the edge conditions, whereas the continu-

ous modes are expressed conveniently in terms of partial

waves in the air region. The Green’s function of the guide

is then derived in terms of the complete spectrum, a step

that is prerequisite to the rigorous solution of discontinuity

and radiation problems in IDG. An application is given to

the scattering by a small transverse dipole placed at the

air–dielectric interface, obtaining analytically the far field

and quasi-analytically the near field.

APPENDIX

DIRECT CHECK ON ORTHONORMALITY OF THE

CONTINUUM

We want to verify that the condition

is satisfied by direct integration. Define by 11 the integral

over the slot cross section. This is given by

2 sinq~(y+h) sinql(y+h) ~A2)
.@n(x)@;(x);

sin q. h sin q~h

where

()CI’=a(k; ,k;) q;=((r-l)k: -k:- K 2.
a

By orthogonality of the +. and integration over y, we have

1
~l=xQn(~x)Qn(~4)~.~”~

n

“[

sin(q. –q~)h sin(qu+q~)h

%1–%’l – q.+ % 1
2 sin a sin d

—
- ~ ~:_k,2 ZQn(L)Qn(W

—

~(q:cot q~h-jncot qnh).

In the air region, we have

2
12= ]mdx~~dy – coskXxcosk:x

o 0 w

2 sin(kyy + a) sin(k~y + a’).—
n

“[sin (a – a’) sin (a+ a’)

kY–k~ – kY+k~
1)

{

2 sin a sin a’
=8(kX–kj) ~(k,–k~,)–x k2_k,2

Y Y

}
.(k;cota’-kycot~) .

Satisfaction of (Al) implies

ll+12=8(kX –kJ)8(kY–kj). (A5)
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If the second term in (A4) equals 11, this is indeed the

case. It is now verifiable that (A5) holds provided a is

chosen such that

kycota8(kx–k~) = xQn(~x)Qn(~4)~ncot9n~
n

Integrating w.r.t. k; from O to co, we recover

kycota=~
r

; lQn(~x)~.cotw+
n

which is just our definition (43) of a.
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